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A B S T R A C T

This work presents a discrete-to-continuum approach to the constitutive response of composite materials
formed by embedding a network of spider silk fibers in a matrix material. A multiscale model that makes use
of the virial stress concept of statistical mechanics is formulated, which accounts for hyperelastic constitutive
equations of the component materials. The finite element implementation of the given constitutive equations
is also carried out. Numerical simulations show the response of a silk composite formed by embedding a spider
orb web in a matrix material, and illustrate the main features of the proposed model. In the presence of a weak
matrix, the force–displacement response of a silk composite is compared with that deriving from an atomistic
modeling of the spider orb web. A simulation of the response of a composite equipped with an elastomeric
matrix is also discussed.
1. Introduction

The peculiar mechanical properties of spider silks, and their ability
to combine extreme values of lightness, strength, ductility and tough-
ness are extensively documented in the literature (see, e.g., [1–4] and
references therein). The radial threads and the terminal supports of the
spider orb webs are made of the strong and tough major-ampullate
dragline silk, while the spiral threads consist of a more flexible and
viscid type of silk, which is well suited to capture preys [4,5]. Other
types of silk are produced by different glands of spiders for various
purposes, including coating of spiral threads, attachments to substrates,
prey wrapping and egg sacs [2]. The outstanding material properties of
the dragline silk (tensile strength up to 1.6 GPa, toughness up to 200–
400 MJ/m3 [1,6]) mainly derive from the hierarchical architecture of
the fibers, which dictates the material mechanical behavior on multiple
length scales. A single thread consists of a bundle of microfibrils
wrapped in a skin layer, which exhibit diameters ranging from 30 nm to
more than 100 nm, and are formed by crystalline 𝛽− sheets embedded
in a disordered amorphous matrix [3,6,7]. The great energy absorption
capacity of spider orb webs has been linked to the breakage of hydrogen
bonds and the uncoiling of the chains of proteins forming the silk fibrils,
which is referred to as ‘sacrificial bonds and hidden lengths’ (SBHL)
mechanism in the literature (see, e.g., [8,9] and references therein).

The design and fabrication of synthetic fibers matching the remark-
able mechanical behavior of spider silks represents an open challenge
for scientists and materials engineers [2,9,10]. Active lines of research
in this field include the artificial spinning of recombinant silk pro-
teins and regenerated silk [2,11,12], as well as the electrospinning of
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synthetic polymeric fibers formed by aligned nanofibrils and linking
molecules, which combine high strength and high toughness [13]. The
development of hybrid composites mixing spider silks with inorganic
nanomaterials (e.g., carbon nanotubes) is also receiving increasing
attention in the scientific community [14,15]. The additive manufactur-
ing of spiderweb-inspired composite materials obtained by combining
an elastomeric matrx with 3D-printed microscale fibers made out of
polycarbonated filaments, which are designed so as to reproduce the
SBHL mechanism of silk fibrils, has been investigated in [9].

Either discrete or continuous approaches have been proposed to
mechanically model the hierarchical structure of spider silks [6,16].
Multiscale approaches have also been frequently employed, making use
of either information-passing discrete models [3,16], or microstructure-
informed constitutive equations at the continuum level [5,7,17–19].
The present work contributes to such a literature by proposing a
novel discrete-to-continuum approach, which is aimed at linking the
mechanical response of the individual spider silk threads with that of
a continuous medium that incorporates these elements into a matrix
phase [14,15]. Such a medium is modeled through a homogenization
approach that makes use of the virial stress concept of molecular
dynamics at zero temperature [20,21] (Section 2). We restrict our
attention to the nonlinear elastic response of the analyzed composites,
by addressing a pseudo-elastic modeling of the hysteretic behavior
expected under loading-unloading cycles [22,23] to future work. When
the matrix material is absent, a distinctive feature of the proposed
model is that it predicts a stress field that corresponds to the contin-
uum limit of the force network carried by the silk fibers, provided
vailable online 20 April 2024
020-7462/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.ijnonlinmec.2024.104735
Received 6 December 2023; Received in revised form 16 March 2024; Accepted 19
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

April 2024

https://www.elsevier.com/locate/nlm
https://www.elsevier.com/locate/nlm
mailto:adaamendola1@unisa.it
https://doi.org/10.1016/j.ijnonlinmec.2024.104735
https://doi.org/10.1016/j.ijnonlinmec.2024.104735
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Non-Linear Mechanics 163 (2024) 104735A. Amendola et al.
Fig. 1. Reference configuration of a silk fiber network embedded in a matrix material.

that such a network is derived from a structured mesh and matches
suitable regularity conditions [24]. We apply the model formulated in
Section 2 to the prediction of the mechanical response at the continuum
level [25] of an orb web embedded in a matrix material, which is
subject to transverse forces [4,5] (Section 4). A first group of numerical
results deals with the case of a weak matrix composite, with the aim
of approximating the response of a spider web under an impact with
a pray through a continuum model. An additional simulation instead
analyzes the embedding of a spider web into an elastomeric matrix to
form an impact absorption material layer. The results given in Section 4
illustrate the ability of the proposed multiscale approach in bridging the
gap between the response at structure-scale of the fiber network and the
behavior in the continuum limit of a silk composite. We draw the main
conclusions of the present study and directions for future research in
Section 5.

2. A discrete-to-continuum constitutive model of a silk composite

Let us consider a network 𝑤 of silk fibers/fibrils embedded in a
matrix material, which forms a continuous silk composite 𝑤 at the
mesoscale, in two- or three-dimensions (see Fig. 1).

Let 𝐹 denote the deformation gradient of 𝑤, and let 𝐶 = 𝐹 𝑇𝐹
denote the right Cauchy–Green deformation tensor. By focusing our
attention on isotropic matrix materials and assuming that the silk
threads are loaded in simple tension/compression, we make use of the
following invariants of 𝐶 (see, e.g., [26–29]):

𝐼1 = 𝑡𝑟(𝐶),

𝐼2 = 1
2
[𝑡𝑟(𝐶)2 − 𝑡𝑟(𝐶2)],

𝐼3 = 𝑑𝑒𝑡(𝐶),

𝐼 (𝑖,𝑗)4 = 𝑁 (𝑖,𝑗) ⋅ 𝐶 ⊗𝑁 (𝑖,𝑗) (1)

where 𝑁 (𝑖,𝑗) is the unit vector aligned with the direction of the (𝑖, 𝑗) silk
thread in the reference configuration (Fig. 2).

We compute the second Piola–Kirchhoff stress tensor 𝑆 of ̂𝑤
through the following additive formula [26–29]:

𝑆 = 𝑆𝑚 + 𝑆𝑓 (2)

where 𝑆𝑚 is the stress tensor associated with the matrix material and
𝑆 is the stress associated with the silk fiber network. The constitutive
2

𝑓

equation for 𝑆𝑚 is written as follows

𝑆𝑚 = 2 𝑉𝑚
𝜕𝑊𝑚
𝜕𝐶

(3)

where 𝑉𝑚 is the volume fraction of the matrix material, and 𝑊𝑚 is a
given strain energy function of the invariants 𝐼1, 𝐼2, 𝐼3 [26,29].

We now pass to consider the second Piola–Kirchhoff stress tensor
𝑆𝑓 , which is associated with an averaging volume 𝛺 centered at the
generic point of 𝑤. The latter encompasses an arbitrary collection of
silk threads featuring end points (𝑖, 𝑗). We compute 𝑆𝑓 through the
following formula of the virial stress of a molecular system at zero
temperature [21,24]:

𝑆𝑓 = 1
2|𝛺|

∑

𝑖,𝑗
(𝑋(𝑗) −𝑋(𝑖))⊗ �̂� (𝑖,𝑗) (4)

Here, |𝛺| is the measure of 𝛺; �̂� (𝑖,𝑗) is the referential description
of the axial force carried by the (𝑖, 𝑗) silk thread; 𝑋(𝑖) and 𝑋(𝑗) are
the position vectors of the end points of such a fiber in the reference
configuration. Upon setting:

𝑋(𝑗) −𝑋(𝑖) = 𝐿(𝑖,𝑗)𝑁 (𝑖,𝑗), �̂� (𝑖,𝑗) = 𝑓 (𝑖,𝑗)𝑁 (𝑖,𝑗), (5)

where 𝐿(𝑖,𝑗) = ‖𝑋𝑗 −𝑋𝑖‖, we can rewrite Eq. (4) as follows:

𝑆𝑓 = 1
2|𝛺|

∑

𝑖,𝑗
𝐿(𝑖,𝑗)𝑓 (𝑖,𝑗)𝑁 (𝑖,𝑗) ⊗𝑁 (𝑖)

= 1
2|𝛺|

∑

𝑖,𝑗
𝐴(𝑖,𝑗)𝐿(𝑖,𝑗) 1

𝜆(𝑖,𝑗)
𝜕𝑊 (𝑖,𝑗)

𝜕𝜆(𝑖,𝑗)
𝑁 (𝑖,𝑗) ⊗𝑁 (𝑖,𝑗) (6)

Here, 𝐴(𝑖,𝑗) denotes the nominal cross-section areas of the 𝑖 − 𝑗 silk
thread; 𝑊 (𝑖,𝑗) denotes the corresponding strain energy function, and we
have set 𝜆(𝑖,𝑗) =

√

𝐼 (𝑖,𝑗)4 . Eq. (6) suggests that 𝛺 can be regarded as a
hyperelastic region endowed with the following strain energy function
(see [26], pag. 220):

𝑊𝛺 = 𝑉𝑚 𝑊𝑚 + 1
2
∑

𝑖,𝑗
𝑉 (𝑖,𝑗)
𝑓 𝑊 (𝑖,𝑗)(𝜆(𝑖,𝑗)). (7)

𝑉 (𝑖,𝑗)
𝑓 denoting the volume fraction of the 𝑖 − 𝑗 silk thread within 𝛺. It

is worth observing that the presence of the averaging volume |𝛺| gives
a multiscale character to the constitutive Eqs. (6), (7).

3. A finite element model of a silk composite

Let us now introduce the finite element (FE) discretization ̂𝑤 of
𝑤 shown in Fig. 2. We describe the constitutive response of the
individual silk threads forming such a model through the multiscale
model proposed by De Tommasi et al. in [7]. This model accounts for
the following wormlike chain (WLC) law of the stress–strain response of
the soft fraction of the material forming the threads (amorphous phase):

𝜎𝑠 = �̂�𝑠(𝜀, 𝜀𝑐 ) = 𝐸𝑠

(

1
4

(

1 − 𝜀
𝜀𝑐

)−2
− 1

4
+ 𝜀

𝜀𝑐

)

(8)

where 𝜎𝑠 denotes the nominal stress carried by the soft phase; 𝜀 is
the engineering strain of the fiber; 𝜀𝑐 is a limit strain (or countour
length [7]) and 𝐸𝑠 is the Young modulus of the soft phase.

Denoting 𝜎ℎ the nominal stress carried by the hard, crystalline phase
of the thread, the model by De Tommasi et al. [7] assumes:

𝜎ℎ(𝜀) =

⎧

⎪

⎨

⎪

⎩

0, if 𝜀 ≤ 𝜀𝑎,
𝐸ℎ(𝜀 − 𝜀𝑎), if 𝜀𝑎 < 𝜀 < 𝜀𝑡,
𝜎𝑠(𝜀, 𝜀𝑐 ), if 𝜀 ≥ 𝜀𝑡,

(9)

Here, 𝐸ℎ indicates the Young modulus of the hard phase; while 𝜀𝑎 and
𝜀𝑡 denote activation and transition strains, respectively. It is indeed
assumed that the hard material is activated for 𝜀 = 𝜀𝑎 and undergoes a
transition to the soft phase for 𝜀 = 𝜀 . Upon restricting our analysis to
𝑡
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Fig. 2. Finite element model of a composite system formed by embedding a spider orb web into a matrix material.
the loading branch (branch #1) of the stress–strain response, we denote
the fraction of the soft material by 𝛼 and we set:

𝛼 = 𝛼1(𝜀) = 𝛼0 + ∫

𝜀

0
𝑝(𝜀𝑡)𝑑𝜀𝑡, (10)

𝜎 = 𝜎1(𝜀) = 𝛼1(𝜀)�̂�𝑠(𝜀, �̂�𝑐 (𝛼1(𝜀)))

+ 𝐸ℎ

(

∫

𝛿

𝜀
𝑝(𝜀𝑡)𝑑𝜀𝑡 + ∫

𝜀+𝛿

𝑚𝑎𝑥(𝜀,𝛿)
(𝜀 − (𝜀𝑡 − 𝛿))𝑝(𝜀𝑡)𝑑𝜀𝑡

)

. (11)

where 𝑝 denotes a Gaussian probability distribution [7].
For what concerns the matrix material, we introduce a nearly in-

compressible St. Venant - Kirchhoff model described by the following
equations [30]:

𝑊𝑚 = 𝑊𝑚,𝑖𝑠𝑜 + 𝑊𝑚,𝑣𝑜𝑙 ,

𝑊𝑚,𝑖𝑠𝑜 = 1
2
(𝜆𝑚 + 2𝜇𝑚)𝐼21 − 2 μ𝑚𝐼2, (12)

𝑊𝑚,𝑣𝑜𝑙 = 1
2
𝑘𝑚

(

𝐽𝑒𝑙 − 1
)2 ,

where 𝜆𝑚 and 𝜇𝑚 are two Lamé constants; 𝑘𝑚 is a bulk modulus; 𝐼1
and 𝐼2 are the first and the second invariant of the isochoric Green–
Lagrange strain tensor �̄� = 1

2 (�̄�−𝐼), respectively. Here, 𝐼 is the identity
tensor, and we have set:

�̄� = 𝐽−2∕3
𝑒𝑙 𝐶, (13)

𝐽𝑒𝑙 = 𝐽∕𝐽𝑡ℎ, (14)

𝐽 denoting the determinant of the total deformation gradient tensor,
and 𝐽𝑡ℎ denoting a thermal volume ratio. Assuming that the web is
clamped at the boundary, we initially apply a fictitious thermal load
to the radial branches (before a mechanical load is applied), in order
to model their pretension. Pretension forces play an important role in
the stiffness properties of spider orb webs and their magnitude in the
webs weaved by different spider species is discussed in [31]. A thermal
loading defined by the volume ratio 𝐽𝑡ℎ = (1 + 𝛼𝑚,𝑖𝑠𝑜(𝑇 − 𝑇𝑟𝑒𝑓 ))3 is
applied to the radial branches of the finite element model (FEM) shown
in Fig. 2, where 𝛼𝑚,𝑖𝑠𝑜 is the coefficient of volumetric thermal expansion
of the matrix material, and 𝑇 − 𝑇𝑟𝑒𝑓 is a suitable temperature change.
Due to the end constraints, such a thermal loading produces a radial
stress 𝜎0 at the extremities of the radial branches, and pretension forces
𝐹0 = 𝜎0 × ℎ𝑟 × 𝐿𝑟, where ℎ𝑟 and 𝐿𝑟 denote the thickness and the width
of the terminal cross-section, respectively.
3

4. Numerical simulations

The present section illustrates numerical results obtained through
the use of the FEM formulated in the previous section. We examine
an orb web imported from Ref. [4], which has an external radius
of 0.3927 m. It comprises 8 radial threads, which feature 3.93 μm
diameter, and 11 spiral threads, with 2.40 μm diameter. The total mass
of the web is 1.97 g.

The constitutive Eqs. (8)–(11) were fitted to the stress–strain re-
sponse of an atomistically derived model of the Nephila clavipes dragline
silk presented in [4] (model A), by using the ‘NonlinearModelFit’
command of Mathematica® (Version 12.2). Such a fitting procedure
led us to estimate 𝐸𝑠 = 183.06 MPa, 𝐸ℎ = 875.90 MPa; 𝜀𝑐 = 0.88;
𝛿 = 𝜀𝑡 − 𝜀𝑎 = 0.60; 𝑝 = 886 𝑒−4.5((𝜀𝑡+1)2) (Fig. 3). Upon setting 𝜆 = 1 + 𝜀,
it is easy to recognize that the constitutive model under examination is
well described by the following strain energy function:

𝑊𝑓 = 𝑘
(

0.324846 (𝜆 − 1)8 − 0.709017 (𝜆 − 1)7 + 0.667853 (𝜆 − 1)6

−0.34785 (𝜆 − 1)5 + 0.115503 (𝜆 − 1)4 − 0.0238718 (𝜆 − 1)3

+ 0.00540063 (𝜆 − 1)2
)

(15)

where 𝑘 = 105 MPa.
For what concerns the matrix properties, we prescribe: 𝑘𝑚 = 𝐸𝑚∕

(3 (1 − 2𝜈𝑚)); 𝜆𝑚 = 𝐸𝑚𝜈𝑚∕((1 + 𝜈𝑚)(1 − 2𝜈𝑚)); 𝜇𝑚 = 𝐸𝑚∕(2 (1 + 𝜈𝑚));
and 𝛼𝑚,𝑖𝑠𝑜 = −10.6 × 10−4 ◦ C−1 [32], where 𝐸𝑚 and 𝜈𝑚 are the Young
modulus and the Poisson’s ratio of the material, respectively.

The finite element simulations presented hereafter employ two dif-
ferent matrix materials. We initially deal with a continuous model of
the spider orb web, which is obtained by embedding such a structure
into a fictitious matrix material much weaker than the silk threads.
We will refer to this model as ‘weak matrix silk composite’ (WMSC). It
exhibits 𝐸𝑚 = 𝐸ℎ ×10−5 and 𝜈𝑚 = 0.4. An additional FE simulation con-
siders a cured polydimethylsiloxane silk composite (PDMSC) obtained
by embedding the examined spider web into a Sylgard 180 elastomeric
matrix [33]. Such a simulation is aimed at studying a fiber composite
that can be employed to form an impact absorption material [9]. It
employs the matrix properties 𝐸𝑚 = 1.5 MPa and 𝜈𝑚 = 0.45, which are
on the range of values listed in Ref. [33] for Sylgard 180.

The strain energy function of the generic finite element 𝛺 is ob-
tained by making use of Eq. (15) to model the silk threads and Eq. (13)
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Fig. 3. Fitting of the 𝜎 vs. 𝜀 model by De Tommasi et al. [7] to the stress–strain
response atomistically derived by Cranford et al. [4] for the Nephila clavipes dragline
silk (reproduced with permission).

to model the matrix material. The response to a concentrated load 𝐹 ,
applied on a radial thread, was simulated through the FE software
COMSOL® Multiphysics [30], employing a mesh of 488 brick elements
and 994 nodes, for a total of 2982 degrees of freedom. The thickness of
all the brick elements is equal to 3.93 μm (diameter of the radial threads
of the spider orb web). A load history that contemplates a transverse
force growing linearly from 0 up to a given maximum value 𝐹𝑚𝑎𝑥 was
applied to a radial node placed at a distance of 0.251 m from the
center of the web. A geometrically nonlinear, quasi-static analysis was
performed to analyze such a load history through 10 steps, employing
the MUMPS solver [30]. The maximum vertical displacement 𝛿 was
determined at each step of the load history, so as to build the 𝐹 vs. 𝛿
response curve of the system. Figs. 4(a, b) show the responses computed
for the analyzed WMSC and PDMSC models.

We run a comparison between the 𝐹 − 𝛿 curves obtained for the
WMSC, for two different values of the pretension force 𝐹0, and the
force–displacement curve predicted by the atomistic model (AM) of
the spider web analyzed in [4] (molecular dynamics approach). The
examined pretension forces amount to 3112 μN (𝑇 − 𝑇𝑟𝑒𝑓 = 270 ◦C),
1230 μN (𝑇 − 𝑇𝑟𝑒𝑓 = 150 ◦C) and 59 μN (𝑇 − 𝑇𝑟𝑒𝑓 = 10 ◦C). The
first two of these pretension forces are in the range of values reported
in Ref. [31] for Nephila webs (average value: 1.35μN/mg; standard
deviation: ±0.97μN/mg). The results shown in Fig. 4(a) demonstrate
that the thin membrane model analyzed in this study exhibits a very
low effective stiffness coefficient 𝑘𝑡 = 𝑑𝐹∕𝑑𝛿 against quasi-static
transverse loading, when the pretension force 𝐹0 approaches zero. This
is clearly visible in Fig. 4(a), where one observes values of 𝑘𝑡 that
are close to zero for 𝐹0 = 59 μN and 𝛿 ≈ 0. A significant increase
in the stiffness coefficient of the membrane is observed in the large
displacement regime, due to second-order effects [34]. Differently, the
molecular dynamics modeling presented in [4] for the ‘bare’ spider orb
web predicts non-zero transverse stiffness of the web including for small
deflections. One observes that the tangent stiffness coefficients of the
examined WMSC models well approximate the value of 𝑘𝑡 predicted by
the AM for 𝛿 ≥ 0.25 m (see Fig. 4(a)).

Moving on to analyze the response of the PDMSC model, we ob-
serve that the 𝐹 − 𝛿 curve of such a system exhibits a nearly zero
stiffness at the origin, due to the absence of pretension forces, as we
already observed (Fig. 4(b)). Nevertheless, this curve gets significantly
stiffer than those exhibited by the AM of the bare spider web and
the WMSC, for 𝛿 > 0, 07 m. When it results 𝛿 = 0.10 m and 𝛿 =
0.15, the secant stiffness 𝑘𝑠 coefficients of the PDMSC (denoted by
𝑘1𝑠 and 𝑘2𝑠 in Fig. 4(b), respectively) are nearly ten times and twenty
times larger than those exhibited by the bare spider orb web (𝑘1′𝑠
and 𝑘2′ ). Such results highlight the convenience, in terms of overall
4

𝑠

Fig. 4. Comparison of force–displacement responses of an atomistic model (AM) of a
spider orb web (reproduced with permission from [4]) and FEM simulations of silk
composite systems subject to a concentrated transverse load along a radial thread. (a)
Comparison between the responses of WMSC and AM models. (b) Comparison between
PDMSC and AM responses.

stiffness improvements, of embedding spider web (or spider web-like)
fiber networks in elastomeric matrices, with the aim of forming novel
composite materials [9].

Fig. 5 illustrates the distributions of the maximum (𝜎1) and mini-
mum (𝜎3) principal stresses that are associated with the results of the
WMSC models shown in Fig. 4(a), in correspondence to the cases with
𝐹0 = 59 μN and 𝐹0 = 3112 μN (minimum and maximum values of
the pretension force). For 𝐹0 = 3112 μN, we observe the occurrence
of compressive stresses 𝜎3 < 0 over the terminal (clamping) points
of the radial elements (stresses absorbed by the supports), and also
in correspondence to some annular (or spiral) elements, which are
adjacent to the radial branches or close to the center of the membrane
(Fig. 5(b)). The compressive stresses assume peak absolute values no
greater than 0.05 MPa in annular elements (0.12 MPa under the point
load), i.e. extreme values in annular elements equal in magnitude to
about 1/10 of the maximum value of the tensile principal stress 𝜎1 (0.48
MPa, cf. Fig. 5(a)). Such compressive stresses are expected to produce
the local wrinkling of the membrane [34–36], whose study is beyond
the scope of the present work and is addressed to future research.
We note that, for 𝐹0 = 59 μN, the spiral compressive stresses 𝜎3 are
significantly reduced in magnitude, as compared to the previous case,
and exhibit peak absolute values of the order of 0.015 MPa in annular
elements and an absolute value equal to 0.07 MPa under the point
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Fig. 5. Maps of the maximum (𝜎1) and minimum (𝜎3) principal stresses in the WMSC model for 𝐹=0.03 𝑁 and different values of the pretension force 𝐹0.
load (Fig. 5(d)). The maximum tensile stress 𝜎1 of the case with the
minimum pretension force is nearly equal to 1/2 of the analogous stress
value associated with the maximum pretension force (cf. Figs. 5(c)
and 5(a)). Such a stress component does not exhibit significantly large
negative values, since the lowest values of 𝜎1 are of the order of
−3.5 × 10−4 MPa and -9 × 10−4 MPa for 𝐹0 = 59 μN and 𝐹0 = 3112 μN,
respectively. These values are achieved in correspondence to isolated
points of the circumferential elements forming the boundary of the
membrane. It is worth noting that one can suppress or mitigate the
wrinkling of a thin membrane by a number a techniques, which include:
boundary reinforcements with cables; metamaterial and/or topology
optimization approaches; and the adoption of curved edges, to name
but a few examples (refer, e.g., to [36] and references therein).

5. Concluding remarks

We have formulated a discrete-to-continuum approach to the con-
stitutive equation of a composite material that is formed by embedding
spider silk threads in a matrix material. The adopted model makes use
of the virial stress concept to smear the forces carried by the silk fibers
over averaging volumes. Hyperelastic strain energy functions have been
introduced to model the elastic response of the matrix material and
the reinforcing fibers in the large strain regime. Numerical simula-
tions have highlighted that the presented model is able to reproduce
both the response of a bare spider orb web at the continuum level,
when combined with a weak matrix material, and the response of a
real silk composite. It offers a solid tool to analyze novel composite
materials that use recombinant silk, regenerated silk [2,11,12], and/or
synthetic and/or 3D-printed polymeric fibers embedded in elastomeric
matrices [9,13]. We address an extension of the mechanical model
presented in this study to future work, with the aim of including
hysteresis effects due to the loading-unloading cycles, via pseudo-
elastic approaches [22,23]; to carry out the modeling of the wrinkling
phenomenon in thin membranes made of spider silk composites, as well
as and to develop suitable techniques for the prevention or mitigation
of such a phenomenon [34–36]. Additional lines of future research
include the description of strain-rate effects and impact loading, as
5

well as the application of the given model to a wide range of mul-
tiscale fiber-reinforced composites, membrane networks and porous
solids [37–39].
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